Overslaan en naar de inhoud gaan
Home

Hoofdnavigatie

  • Home
  • Wiskunde is overal
Geef de woorden op waarnaar u wilt zoeken.
  1. Home
  2. For business economics
  3. Chapter 5: Optimization
  4. Optimization functions of one variable
  5. Second-order condition extremum

Second-order condition extremum

Introduction: The Second-order derivative can be used to determine whether a Stationary point is a minimum or a maximum.

Theorem: If $c$ is a stationary point of the function $y(x)$, then it holds that:

  • if $y''(c)> 0$, then $y(c)$ is a minimum;
  • if $y''(c)< 0$, then $y(c)$ is a maximum.

Remark: If $y''(c)=0$ the stationary point $c$ can be a minimum location, a maximum location or a saddle point.

‹ Vorige paginaExercise 2
Volgende paginaExample (film) ›
Wiskunde Mathematics for business economics leeromgeving

 

  • Chapter 1: Functions of one variable
  • Chapter 2: Differentiation of functions of one variable
  • Chapter 3: Functions of two variables
  • Chapter 4: Differentiation of functions of two variables
  • Chapter 5: Optimization
    • Optimization functions of one variable
      • Monotonicity
      • Monotonicity and derivative
      • Minimum/maximum
      • Stationary point
      • First-order condition extremum
      • Monotonicity condition extremum
      • Alternative monotonicity condition extremum
      • Second-order derivative
      • Second-order condition extremum
        • Example (film)
        • Exercise 1
        • Exercise 2
        • Exercise 3
    • Applications 1
    • Optimization functions of two variables
    • Applications 2
    • Optimization constrained extremum problems
    • Applications 3
    • Optimization convex/concave functions
  • Chapter 6: Areas and integrals

Footer-menu

  • Cookiebeleid en privacy
  • Disclaimer
Wiskunde D leeromgeving