Overslaan en naar de inhoud gaan
Home

Hoofdnavigatie

  • Home
  • Wiskunde is overal
Geef de woorden op waarnaar u wilt zoeken.
  1. Home
  2. For business economics
  3. Chapter 5: Optimization
  4. Optimization functions of one variable
  5. Alternative monotonicity condition extremum

Alternative monotonicity condition extremum

Introduction: For some situations one can use an alternative formulation of the Monotonicity condition extremum.

Theorem: Assume $c$ is the only stationary point of a function $y(x)$ on an interval and $a$ is a point to the left of $c$ and $b$ a point to the right of $c$ such that $a<c<b$. It holds that:
  • if $y(a)>y(c)$ and $y(b)>y(c)$, then $y(c)$ is a minimum;
  • if $y(a)<y(c)$ and $y(b)<y(c)$, then $y(c)$ is a maximum.
‹ Vorige paginaExercise 4
Volgende paginaExample (film) ›
Wiskunde Mathematics for business economics leeromgeving

 

  • Chapter 1: Functions of one variable
  • Chapter 2: Differentiation of functions of one variable
  • Chapter 3: Functions of two variables
  • Chapter 4: Differentiation of functions of two variables
  • Chapter 5: Optimization
    • Optimization functions of one variable
      • Monotonicity
      • Monotonicity and derivative
      • Minimum/maximum
      • Stationary point
      • First-order condition extremum
      • Monotonicity condition extremum
      • Alternative monotonicity condition extremum
        • Example (film)
        • Exercise 1
        • Exercise 2
        • Exercise 3
      • Second-order derivative
      • Second-order condition extremum
    • Applications 1
    • Optimization functions of two variables
    • Applications 2
    • Optimization constrained extremum problems
    • Applications 3
    • Optimization convex/concave functions
  • Chapter 6: Areas and integrals

Footer-menu

  • Cookiebeleid en privacy
  • Disclaimer
Wiskunde D leeromgeving