Overslaan en naar de inhoud gaan
Home

Hoofdnavigatie

  • Home
  • Wiskunde is overal
Geef de woorden op waarnaar u wilt zoeken.
  1. Home
  2. For business economics
  3. Chapter 5: Optimization
  4. Optimization functions of one variable
  5. First-order condition extremum

First-order condition extremum

Introduction: A point $x$ such that $y'(x)=0$ is called a stationary point of the function $y(x)$.

Theorem:
  • An extremum location is either a stationary point or a boundary point.
  • Each boundary point is an extremum location.
  • Not each stationary point is an extremum location.
Remark: If a stationary point is not an extremum location, then we call it a saddle point.
‹ Vorige paginaExercise 2
Volgende paginaExercise ›
Wiskunde Mathematics for business economics leeromgeving

 

  • Chapter 1: Functions of one variable
  • Chapter 2: Differentiation of functions of one variable
  • Chapter 3: Functions of two variables
  • Chapter 4: Differentiation of functions of two variables
  • Chapter 5: Optimization
    • Optimization functions of one variable
      • Monotonicity
      • Monotonicity and derivative
      • Minimum/maximum
      • Stationary point
      • First-order condition extremum
        • Exercise
      • Monotonicity condition extremum
      • Alternative monotonicity condition extremum
      • Second-order derivative
      • Second-order condition extremum
    • Applications 1
    • Optimization functions of two variables
    • Applications 2
    • Optimization constrained extremum problems
    • Applications 3
    • Optimization convex/concave functions
  • Chapter 6: Areas and integrals

Footer-menu

  • Cookiebeleid en privacy
  • Disclaimer
Wiskunde D leeromgeving