Overslaan en naar de inhoud gaan
Home

Hoofdnavigatie

  • Home
  • Wiskunde is overal
Geef de woorden op waarnaar u wilt zoeken.
  1. Home
  2. For business economics
  3. Chapter 5: Optimization
  4. Optimization functions of two variables
  5. Stationary point

Stationary point

Introduction: Just as for the optimization of functions of one variable, for the optimization of functions of two variables the stationary points are crucial.

Definition: Let $z(x,y)$ be a function of two variables. A point $(x,y)$ such that
  • $z'_x(x,y)=0$
  • $z'_y(x,y)=0$
is called a stationary point of the function $z(x,y)$.
‹ Vorige paginaExercise
Volgende paginaExample (filmpje) ›
Wiskunde Mathematics for business economics leeromgeving

 

  • Chapter 1: Functions of one variable
  • Chapter 2: Differentiation of functions of one variable
  • Chapter 3: Functions of two variables
  • Chapter 4: Differentiation of functions of two variables
  • Chapter 5: Optimization
    • Optimization functions of one variable
    • Applications 1
    • Optimization functions of two variables
      • Minimum/maximum
      • Stationary point
        • Example (filmpje)
        • Exercise 1
        • Exercise 2
        • Exercise 3
      • First-order condition extremum
      • Second-order partial derivatives
      • Second-order condition extremum
    • Applications 2
    • Optimization constrained extremum problems
    • Applications 3
    • Optimization convex/concave functions
  • Chapter 6: Areas and integrals

Footer-menu

  • Cookiebeleid en privacy
  • Disclaimer
Wiskunde D leeromgeving