By the use of the table of elementary function we are able to determine derivatives quickly. Let us first repeat this table.
$$
\begin{array}{c|ll|l}
& y(x) && y'(x)\\
\hline
(1) & c & & 0\\[2mm]
(2) & x^k & & kx^{k-1}\\[2mm]
(3) & a^x & (a>0) & a^x\ln(a)\\[2mm]
(4) & e^x && e^x\\[2mm]
(5) & ^{a\negthinspace}\log(x) & (a>0, a\neq1) & \dfrac{1}{x\ln(a)}\\[2mm]
(6) & \ln(x) & & \dfrac{1}{x}
\end{array}
$$

Determine for each of the following functions the derivative in $x=1$:
  1. $f(x) = 10$.
  2. $g(x) = x^3$.
  3. $h(x) = e^x$.
  4. $k(x) = 5^x$.
  5. $l(x) = \ln(x)$.
  6. $m(x) = ^{8\negthinspace}\log(x)$.
$\phantom{.} $
The answer for each of the functions is given below.
  1. This is an example of (1), with $c=10$. We know that$f'(x)=0$, hence $f'(1)=0$.
  2. This is an example of (2), with $k=3$. We know that $g'(x)=3x^{3-1}=3x^2$, hence $g'(1)=3\cdot1^2=3$.
  3. This is an example of (3). We know that $h'(x)=e^x$, hence $h'(1)=e^1=e$.
  4. This is an example of (4), with $a=5$. We know that $k'(x)=5^x\ln(5)$, hence $k'(1)=5^1\cdot\ln(5)=5\ln(5)$.
  5. This is an example of (5). We know that $l'(x)=\dfrac{1}{x}$, hence $l'(1)=\dfrac{1}{1} = 1$.
  6. This is an example of (6), with $a=8$. We know that $m'(x)=\dfrac{1}{x\ln(8)}$, hence $m'(1)=\dfrac{1}{1\ln(8)} = \dfrac{1}{\ln(8)}$.